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Finite fields

This chapter develops some of the basic theory of finite fields. As we already
know (see Theorem 9.7), every finite field must be of cardinality pw, for some
prime p and positive integer w. The main results of this chapter are:

• for any prime p and positive integer w, there exists a finite field of
cardinality pw, and

• any two finite fields of the same cardinality are isomorphic.

20.1 Preliminaries

In this section, we prove a few simple facts that will be useful in this and
later chapters; also, for the reader’s convenience, we recall a few basic alge-
braic concepts that were discussed in previous chapters, but which will play
important roles in this chapter.

Theorem 20.1. Let F be a field, and let k, ` be positive integers. Then
Xk − 1 divides X` − 1 if and only if k divides `.

Proof. Let ` = kq + r, with 0 ≤ r < k. We have

X` ≡ XkqXr ≡ Xr (mod Xk − 1),

and Xr ≡ 1 (mod Xk − 1) if and only if r = 0. 2

Theorem 20.2. Let a ≥ 2 be an integer and let k, ` be positive integers.
Then ak − 1 divides a` − 1 if and only if k divides `.

Proof. The proof is analogous to that of Theorem 20.1. We leave the details
to the reader. 2

One may combine these two theorems, obtaining:

448
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Theorem 20.3. Let a ≥ 2 be an integer, k, ` be positive integers, and F a
field. Then Xak − X divides Xa` − X if and only if k divides `.

Proof. We have Xak −X divides Xa`−X iff Xak−1−1 divides Xa`−1−1, and by
Theorem 20.1, this happens iff ak−1 divides a`−1, which by Theorem 20.2
happens iff k divides `. 2

Let F be a field. A polynomial f ∈ F [X] is called square-free if it is not
divisible by the square of any polynomial of degree greater than zero. Using
formal derivatives, we obtain the following useful criterion for establishing
that a polynomial is square-free:

Theorem 20.4. If F is a field, and f ∈ F [X] with gcd(f,D(f)) = 1, then
f is square-free.

Proof. Suppose f is not square-free, and write f = g2h, for g, h ∈ F [X] with
deg(g) > 0. Taking formal derivatives, we have

D(f) = 2gD(g)h+ g2D(h),

and so clearly, g is a common divisor of f and D(f). 2

We end this section by recalling some concepts discussed earlier, mainly
in §17.1, §17.5, and §17.6.

Suppose F is a field, and E is an extension field of F ; that is, F is a
subfield of E, or F is embedded in E via some canonical embedding, and
we identify elements of F with their images in E under this embedding. We
may naturally view E as an F -vector space. Assume that as an F -vector
space, E has finite dimension ` > 0. This dimension ` is called the degree
of E over F , and is denoted (E : F ); moreover, E is called a finite extension
of F .

We may also naturally view E as an F -algebra, either via the inclusion
map or via some canonical embedding. Let E′ be another field extension
of F , and let ρ : E → E′ be a ring homomorphism (which in fact, must be
injective). Then ρ is an F -algebra homomorphism if and only if ρ(a) = a

for all a ∈ F .
For any α ∈ E, the set F [α] = {g(α) : g ∈ F [X]} is a subfield of E

containing F . Moreover, there exists a non-zero polynomial g of degree at
most ` such that g(α) = 0. The monic polynomial φ of least degree such that
φ(α) = 0 is called the minimal polynomial of α over F , and this polynomial
is irreducible over F . The field F [X]/(φ) is isomorphic, as an F -algebra,
to F [α], via the map that sends [g]φ ∈ F [X]/(φ) to g(α) ∈ F [α]. We have
(F [α] : F ) = deg(φ), and this value is called the degree of α over F . If E′ is
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an extension field of F , and if ρ : F [α]→ E′ is an F -algebra homomorphism,
then the action of ρ is completely determined by its action on α; indeed, for
any g ∈ F [X], we have ρ(g(α)) = g(ρ(α)).

20.2 The existence of finite fields

Let F be a finite field. As we saw in Theorem 9.7, F must have cardinality
pw, where p is prime and w is a positive integer, and p is the characteristic of
F . However, we can say a bit more than this. As discussed in Example 9.41,
the field Zp is embedded in F , and so we may simply view Zp as a subfield
of F . Moreover, it must be the case that w is equal to (F : Zp).

We want to show that there exist finite fields of every prime-power cardi-
nality. Actually, we shall prove a more general result:

If F is a finite field, then for every integer ` ≥ 1, there exists
an extension field E of degree ` over F .

For the remainder of this section, F denotes a finite field of cardinality
q = pw, where p is prime and w ≥ 1.

Suppose for the moment that E is an extension of degree ` over F . Let
us derive some basic facts about E. First, observe that E has cardinality
q`. By Theorem 9.16, E∗ is cyclic, and the order of E∗ is q` − 1. If γ ∈ E∗
is a generator for E∗, then every non-zero element of E can be expressed
as a power of γ; in particular, every element of E can be expressed as a
polynomial in γ with coefficients in F ; that is, E = F [γ]. Let φ ∈ F [X] be
the minimal polynomial of γ over F , which is an irreducible polynomial of
degree `. It follows that F is isomorphic (as an F -algebra) to F [X]/(φ).

So we have shown that any extension of F of degree ` must be isomorphic,
as an F -algebra, to F [X]/(φ) for some irreducible polynomial φ ∈ F [X] of
degree `. Conversely, given any irreducible polynomial φ over F of degree `,
we can construct the finite field F [X]/(φ), which has degree ` over F . Thus,
the question of the existence of a finite fields of degree ` over F reduces to
the question of the existence of an irreducible polynomial over F of degree `.

We begin with a simple generalization Fermat’s little theorem:

Theorem 20.5. For any a ∈ F ∗, we have aq−1 = 1, and for any a ∈ F , we
have aq = a.

Proof. The multiplicative group of units F ∗ of F has order q−1, and hence,
every a ∈ F ∗ satisfies the equation aq−1 = 1. Multiplying this equation by
a yields aq = a for all a ∈ F ∗, and this latter equation obviously holds for
a = 0 as well. 2
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Theorem 20.6. We have

Xq − X =
∏
a∈F

(X− a).

Proof. The polynomial

(Xq − X)−
∏
a∈F

(X− a)

has degree less than q, but has q distinct roots (namely, every element of
F ), and hence must be the zero polynomial. 2

The following theorem generalizes Example 17.6:

Theorem 20.7. Let E be an F -algebra. Then the map ρ : E → E that
sends α ∈ E to αq is an F -algebra homomorphism.

Proof. Recall that E being an F -algebra simply means that E is a ring
and that there is a ring homomorphism τ : F → E, and because F is a
field, either τ is injective or E is trivial. Also, recall that ρ being an F -
algebra homomorphism simply means that ρ is a ring homomorphism and
ρ(τ(a)) = τ(a) for all a ∈ F .

Now, if E is trivial, there is nothing to prove. Otherwise, as E contains a
copy of F , it must have characteristic p. Since q is a power of the character-
istic, the fact that ρ is a ring homomorphism follows from the discussion in
Example 9.42. Moreover, by Theorem 20.5, we have τ(a)q = τ(aq) = τ(a)
for all a ∈ F . 2

Theorem 20.8. Let E be a finite extension of F , and consider the map σ :
E → E that sends α ∈ E to αq ∈ E. Then σ is an F -algebra automorphism
on E. Moreover, if α ∈ E is such that σ(α) = α, then α ∈ F .

Proof. The fact that σ is an F -algebra homomorphism follows from the pre-
vious theorem. Any ring homomorphism from a field into a field is injective
(see Exercise 9.38). Surjectivity follows from injectivity and finiteness.

For the second statement, observe that σ(α) = α if and only if α is a root
of the polynomial Xq − X, and since all q elements of F are already roots of
this polynomial, there can be no other roots. 2

The map σ defined in Theorem 20.8 is called the Frobenius map on E

over F . As it plays a fundamental role in the study of finite fields, let us
develop a few simple properties right away.

Since the composition of two F -algebra automorphisms is also an F -
algebra automorphism, for any i ≥ 0, the i-fold composition σi that sends
α ∈ E to αqi

is also an F -algebra automorphism.
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Since σ is an F -algebra automorphism, the inverse function σ−1 is also
an F -algebra automorphism. Hence, σi is an F -algebra automorphism for
all i ∈ Z. If E has degree ` over F , then applying Theorem 20.5 to the field
E, we see that σ` is the identity map, from which it follows that σ−1 =
σ`−1. More generally, we see that for any i ∈ Z, we have σi = σj , where
j = i mod `.

Thus, in considering integer powers of σ, we need only consider the powers
σ0, σ1, . . . , σ`−1. Furthermore, the powers σ0, σ1, . . . , σ`−1 are all distinct
maps. To see this, assume that σi = σj for some i, j with 0 ≤ i < j < `.
Then σj−i would be the identity map, which would imply that all of the q`

elements of E were roots of the polynomial Xqj−i − X, which is a non-zero
polynomial of degree less that q`, and this yields a contradiction.

The following theorem generalizes Theorem 20.6:

Theorem 20.9. For k ≥ 1, let Pk denote the product of all the monic
irreducible polynomials in F [X] of degree k. For all positive integers `, we
have

Xq` − X =
∏
k|`

Pk,

where the product is over all positive divisors k of `.

Proof. First, we claim that the polynomial Xq`−X is square-free. This follows
immediately from Theorem 20.4, since D(Xq` − X) = q`Xq`−1 − 1 = −1.

So we have reduced the proof to showing that if f is a monic irreducible
polynomial of degree k, then f divides Xq` − X if and only if k | `. Let
E := F [X]/(f), and let η := [X]f ∈ E, which is a root of f .

For the first implication, assume that f divides Xq` − X. We want to show
that k | `. Now, if Xq` − X = fg, then ηq` − η = f(η)g(η) = 0, so ηq`

= η.
Therefore, if σ is the Frobenius map on E over F , then we have σ`(η) = η.
We claim that σ`(α) = α for all α ∈ E. To see this, recall from Theorem 17.1
that for all h ∈ F [X] and β ∈ E, we have σ`(h(β)) = h(σ`(β)). Moreover,
any α ∈ E can be expressed as h(η) for some h ∈ F [X], and so

σ`(α) = σ`(h(η)) = h(σ`(η)) = h(η) = α.

That proves the claim.
From the claim, it follows that every element of E is a root of Xq` − X.

That is,
∏

α∈E(X − α) divides Xq` − X. Applying Theorem 20.6 to the field
E, we see that

∏
α∈E(X − α) = Xqk − X, and hence Xqk − X divides Xq` − X.

By Theorem 20.3, this implies k divides `.
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For the second implication, suppose that k | `. We want to show that
f | Xq` − X. Since f is the minimal polynomial of η, and since η is a root
of Xqk − X, we must have that f divides Xqk − X. Since k | `, and applying
Theorem 20.3 once more, we see that Xqk − X divides Xq` − X. That proves
the second implication, and hence, the theorem. 2

For ` ≥ 1, let Π(`) denote the number of monic irreducible polynomials
of degree ` in F [X].

Theorem 20.10. For all ` ≥ 1, we have

q` =
∑
k|`

kΠ(k). (20.1)

Proof. Just equate the degrees of both sides of the identity in Theorem 20.9.
2

From Theorem 20.10 it is easy to deduce that Π(`) > 0 for all `, and in
fact, one can prove a density result—essentially a “prime number theorem”
for polynomials over finite fields:

Theorem 20.11. For all ` ≥ 1, we have

q`

2`
≤ Π(`) ≤ q`

`
, (20.2)

and

Π(`) =
q`

`
+O

(
q`/2

`

)
. (20.3)

Proof. First, since all the terms in the sum on the right hand side of (20.1)
are non-negative, and `Π(`) is one of these terms, we may deduce that
`Π(`) ≤ q`, which proves the second inequality in (20.2). Since this holds
for all `, we have

`Π(`) = q` −
∑
k|`
k<`

kΠ(k) ≥ q` −
∑
k|`
k<`

qk ≥ q` −
b`/2c∑
k=1

qk.

Let us set

S(q, `) :=
b`/2c∑
k=1

qk =
q

q − 1
(qb`/2c − 1),

so that `Π(`) ≥ q` − S(q, `). It is easy to see that S(q, `) = O(q`/2), which
proves (20.3). For the first inequality of (20.2), it suffices to show that
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S(q, `) ≤ q`/2. One can check this directly for ` ∈ {1, 2, 3} (verify), and for
` ≥ 4, we have

S(q, `) ≤ q`/2+1 ≤ q`−1 ≤ q`/2. 2

We note that the inequalities in (20.2) are tight, in the sense that Π(`) =
q`/2` when q = 2 and ` = 2, and Π(`) = q` when ` = 1. The first inequality
in (20.2) implies not only that Π(`) > 0, but that the fraction of all monic
degree ` polynomials that are irreducible is at least 1/2`, while (20.3) says
that this fraction gets arbitrarily close to 1/` as either q or ` are sufficiently
large.

Exercise 20.1. Starting from Theorem 20.10, show that

Π(`) = `−1
∑
k|`

µ(k)q`/k,

where µ is the Möbius function (see §2.6).

Exercise 20.2. How many irreducible polynomials of degree 30 over Z2 are
there?

20.3 The subfield structure and uniqueness of finite fields

We begin with a result that holds for field extensions in general.

Theorem 20.12. Let E be an extension of a field F , and let σ be an F -
algebra automorphism on E. Then the set E′ := {α ∈ E : σ(α) = α} is a
subfield of E containing F .

Proof. By definition, σ acts as the identity function on F , and so F ⊆ E′.
To show that E′ is a subring of E, it suffices to show that E′ is closed under
addition and multiplication. To show that E′ is closed under addition, let
α, β ∈ E′. Then σ(α + β) = σ(α) + σ(β) = α + β, and hence α + β ∈ E′.
Replacing “+” by “·” in the above argument shows that E′ is closed under
multiplication. We conclude that E′ is a subring of E.

To complete the proof that E′ is a subfield of E, we need to show that if
0 6= α ∈ E′ and β ∈ E with αβ = 1, then β ∈ E′. We have

αβ = 1 = σ(1) = σ(αβ) = σ(α)σ(β) = ασ(β),

and hence αβ = ασ(β); canceling α, we obtain β = σ(β), and so β ∈ E′. 2

The subfield E′ in the above theorem is called the subfield of E fixed
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by σ. Turning our attention again to finite fields, the following theorem
completely characterizes the subfield structure of a finite field.

Theorem 20.13. Let E be an extension of degree ` of a finite field F , and
let σ be the Frobenius map on E over F . Then the intermediate fields E′,
with F ⊆ E′ ⊆ E, are in one-to-one correspondence with the divisors k of `,
where the divisor k corresponds to the subfield of E fixed by σk, which has
degree k over F .

Proof. Let q be the cardinality of F . Let k be a divisor of `. Now, by
Theorem 20.6, the polynomial Xq` − X splits into distinct linear factors over
E, and by Theorem 20.3, the polynomial Xqk − X divides Xq` − X. Hence,
Xqk − X also splits into distinct linear factors over E. This says that the
subfield of E fixed by σk, which consists of the roots of Xqk−X, has precisely
qk elements, and hence is an extension of degree k over F . That proves the
existence part of the theorem.

As for uniqueness, we have to show that any intermediate field is of this
type. Let E′ be an intermediate field of degree k over F . By Theorem 20.6,
we have Xqk − X =

∏
α∈E′(X− α) and Xq` − X =

∏
α∈E(X− α), from which it

follows that Xqk − X divides Xq` − X, and so by Theorem 20.3, we must have
k | `. There can be no other intermediate fields of the same degree k over
F , since the elements of such a field would also be roots of Xqk − X. 2

The next theorem shows that up to isomorphism, there is only one finite
field of a given cardinality.

Theorem 20.14. Let E,E′ be extensions of the same degree over a finite
field F . Then E and E′ are isomorphic as F -algebras.

Proof. Let q be of cardinality F , and let ` be the degree of the extensions.
As we have argued before, we have E′ = F [α′] for some α′ ∈ E′, and so E′ is
isomorphic as an F -algebra to F [X]/(φ), where φ is the minimal polynomial
of α′ over F . As φ is an irreducible polynomial of degree `, by Theorem 20.9,
φ divides Xq` − X, and by Theorem 20.6, Xq` − X =

∏
α∈E(X−α), from which

it follows that φ has a root α ∈ E. Since φ is irreducible, φ is the minimal
polynomial of α over F , and hence F [α] is isomorphic as an F -algebra to
F [X]/(φ). Since α has degree ` over F , we must have E = F [α]. 2

Exercise 20.3. This exercise develops an alternative proof for the existence
of finite fields — however, it does not yield a density result for irreducible
polynomials. Let F be a finite field of cardinality q, and let ` ≥ 1 be an
integer. Let E be a splitting field for the polynomial Xq` − X ∈ F [X] (see
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Theorem 17.19), and let σ be the Frobenius map on E over F . Let E′ be
the subfield of E fixed by σ`. Show that E′ is an extension of F of degree `.

Exercise 20.4. Let E be an extension of degree ` over a finite field F of
cardinality q. Show that at least half the elements of E have degree ` over
F , and that the total number of elements of degree ` over F is q` +O(q`/2).

20.4 Conjugates, norms and traces

Throughout this section, F denotes a finite field of cardinality q, E denotes
an extension over F of degree `, and σ denotes the Frobenius map on E

over F .
Consider an element α ∈ E. We say that β ∈ E is conjugate to α (over

F ) if β = σi(α) for some i ∈ Z. The reader may verify that the “conjugate
to” relation is an equivalence relation. We call the equivalence classes of
this relation conjugacy classes, and we call the elements of the conjugacy
class containing α the conjugates of α.

Starting with α, we can start listing conjugates:

α, σ(α), σ2(α), . . . .

As σ` is the identity map, this list will eventually start repeating. Let
k be the smallest positive integer such that σk(α) = σi(α) for some i =
0, . . . , k − 1. It must be the case that i = 0 — otherwise, applying σ−1

to the equation σk(α) = σi(α) would yield σk−1(α) = σi−1(α), and since
0 ≤ i− 1 < k − 1, this would contradict the minimality of k.

Thus, α, σ(α), . . . , σk−1(α) are all distinct, and σk(α) = α. Moreover,
for any i ∈ Z, we have σi(α) = σj(α), where j = i mod k, and so
α, σ(α), . . . , σk−1(α) are all the conjugates of α. Also, σi(α) = α if and
only if k divides i. Since σ`(α) = α, it must be the case that k divides `.

With α and k as above, consider the polynomial

φ :=
k−1∏
i=0

(X− σi(α)).

The coefficients of φ obviously lie in E, but we claim that in fact, they lie
in F . This is easily seen as follows. Consider the extension of the map
σ from E to E[X] that applies σ coefficient-wise to polynomials. This was
discussed in Example 9.48, where we saw that the extended map, which we
also denote by σ, is a ring homomorphism from E[X] into E[X]. Applying σ
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to φ, we obtain

σ(φ) =
k−1∏
i=0

σ(X− σi(α)) =
k−1∏
i=0

(X− σi+1(α)) =
k−1∏
i=0

(X− σi(α)),

since σk(α) = α. Thus we see that σ(φ) = φ. Writing φ =
∑

i aiXi, we see
that σ(ai) = ai for all i, and hence by Theorem 20.8, ai ∈ F for all i. Hence
φ ∈ F [X]. We further claim that φ is the minimal polynomial of α. To see
this, let f ∈ F [X] be any polynomial over F for which α is a root. Then for
any integer i, by Theorem 17.1, we have

0 = σi(0) = σi(f(α)) = f(σi(α)).

Thus, all the conjugates of α are also roots of f , and so φ divides f . That
proves that φ is the minimal polynomial of α. Since φ is the minimal poly-
nomial of α and deg(φ) = k, it follows that the number k is none other than
the degree of α over F .

Let us summarize the above discussion as follows:

Theorem 20.15. Let α ∈ E be of degree k over F , and let φ be the minimal
polynomial of α over F . Then k is the smallest positive integer such that
σk(α) = α, the distinct conjugates of α are α, σ(α), . . . , σk−1(α), and φ

factors over E (in fact, over F [α]) as

φ =
k−1∏
i=0

(X− σi(α)).

Another useful way of reasoning about conjugates is as follows. First,
if α = 0, then the degree of α over F is 1, and there is nothing more to
say, so let us assume that α ∈ E∗. If r is the multiplicative order of α,
then note that any conjugate σi(α) also has multiplicative order r— this
follows from the fact that for any positive integer s, αs = 1 if and only if
(σi(α))s = 1. Also, note that we must have r | |E∗| = q`−1, or equivalently,
q` ≡ 1 (mod r). Focusing now on the fact that σ is the q-power map, we
see that the degree k of α is the smallest positive integer such that αqk

= α,
which holds iff αqk−1 = 1, which holds iff qk ≡ 1 (mod r). Thus, the degree
of α over F is simply the multiplicative order of q modulo r. Again, we
summarize these observations as a theorem:

Theorem 20.16. If α ∈ E∗ has multiplicative order r, then the degree of α
over F is equal to the multiplicative order of q modulo r.
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Let us define the polynomial

χ :=
`−1∏
i=0

(X− σi(α)).

It is easy to see, using the same type of argument as above, that χ ∈ F [X],
and indeed, that

χ = φ`/k.

The polynomial χ is called the characteristic polynomial of α (from E

to F ).
Two functions that are often useful are the “norm” and “trace.” The

norm of α (from E to F ) is defined as

NE/F (α) :=
`−1∏
i=0

σi(α),

while the trace of α (from E to F ) is defined as

TrE/F (α) :=
`−1∑
i=0

σi(α).

It is easy to see that both the norm and trace of α are elements of F ,
as they are fixed by σ; alternatively, one can see this by observing that
they appear, possibly with a minus sign, as coefficients of the characteristic
polynomial χ—indeed, the constant term of χ is equal to (−1)`NE/F (α),
and the coefficient of X`−1 in χ is −TrE/F (α).

The following two theorems summarize the most important facts about
the norm and trace functions.

Theorem 20.17. The function NE/F , restricted to E∗, is a group homo-
morphism from E∗ onto F ∗.

Proof. We have

NE/F (α) =
`−1∏
i=0

αqi
= α

P`−1
i=0 qi

= α(q`−1)/(q−1).

Since E∗ is a cyclic group of order q` − 1, the image of the (q` − 1)/(q − 1)-
power map on E∗ is the unique subgroup of E∗ of order q − 1 (see Theo-
rem 8.31). Since F ∗ is a subgroup of E∗ of order q − 1, it follows that the
image of this power map is F ∗. 2

Theorem 20.18. The function TrE/F is an F -linear map from E onto F .
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Proof. The fact that TrE/F is an F -linear map is a simple consequence of
the fact that σ is an F -algebra automorphism (verify). As discussed above,
TrE/F maps into F . Since the image of TrE/F is a subspace of F , the image
is either {0} or F , and so it suffices to show that TrE/F does not map all of
E to zero. But an element α ∈ E is in the kernel of TrE/F if and only if α
is a root of the polynomial

X + Xq + · · ·+ Xq`−1
,

which has degree q`−1. Since E contains q` elements, not all elements of E
can lie in the kernel of TrE/F . 2

Example 20.1. As an application of some of the above theory, let us in-
vestigate the factorization of the polynomial Xr − 1 over F , a finite field of
cardinality q. Let us assume that r > 0 and is relatively prime to q. Let
E be a splitting field of Xr − 1 (see Theorem 17.19), so that E is a finite
extension of F in which Xr − 1 splits into linear factors:

Xr − 1 =
r∏

i=1

(X− αi).

We claim that the roots αi of Xr − 1 are distinct—this follows from the
Theorem 20.4 and the fact that gcd(Xr − 1, rXr−1) = 1.

Next, observe that the r roots of Xr − 1 in E actually form a subgroup
of E∗, and since E∗ is cyclic, this subgroup must be cyclic as well. So the
roots of Xr− 1 form a cyclic subgroup of E∗ of order r. Let ζ be a generator
for this group. Then all the roots of Xr − 1 are contained in F [ζ], and so we
may as well assume that E = F [ζ].

Let us compute the degree of ζ over F . By Theorem 20.16, the degree `
of ζ over F is the multiplicative order of q modulo r. Moreover, the φ(r)
roots of Xr−1 of multiplicative order r are partitioned into φ(r)/` conjugacy
classes, each of size `; indeed, as the reader is urged to verify, these conjugacy
classes are in one-to-one correspondence with the cosets of the subgroup of
Z∗r generated by [q]r, where each such coset C ⊆ Z∗r corresponds to the
conjugacy class {ζa : [a]r ∈ C}.

More generally, for any s | r, any root of Xr−1 whose multiplicative order
is s has degree k over F , where k is the multiplicative order of q modulo
s. As above, the φ(s) roots of multiplicative order s are partitioned into
φ(s)/k conjugacy classes, which are in one-to-one correspondence with the
cosets of the subgroup of Z∗s generated by [q]s.

This tells us exactly how Xr − 1 splits into irreducible factors over F .
Things are a bit simpler when r is prime, in which case, from the above
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discussion, we see that

Xr − 1 = (X− 1)
(r−1)/`∏

i=1

fi,

where each fi is an irreducible polynomial of degree `, and ` is the multi-
plicative order of q modulo r.

In the above analysis, instead of constructing the field E using Theo-
rem 17.19, one could instead simply construct E as F [X]/(φ), where φ is any
irreducible polynomial of degree `, and where ` is the multiplicative order
of q modulo r. We know that such a polynomial φ exists by Theorem 20.11,
and since E has cardinality q`, and r | (q` − 1) = |E∗|, and E∗ is cyclic, we
know that E∗ contains an element ζ of multiplicative order r, and each of
the r distinct powers of ζ are roots of Xr − 1, and so this E is a splitting
field Xr − 1 over F . 2

Exercise 20.5. Let E be a finite extension of a finite field F . Show that
for a ∈ F , we have NE/F (a) = a` and TrE/F (a) = `a.

Exercise 20.6. Let E be a finite extension of a finite field F . Let E′ be an
intermediate field, F ⊆ E′ ⊆ E. Show that

(a) NE/F (α) = NE′/F (NE/E′(α)), and
(b) TrE/F (α) = TrE′/F (TrE/E′(α)).

Exercise 20.7. Let F be a finite field, and let f ∈ F [X] be a monic irre-
ducible polynomial of degree `. Let E = F [X]/(f) = F [η], where η := [X]f .

(a) Show that

D(f)
f

=
∞∑

j=1

TrE/F (ηj−1)X−j .

(b) From part (a), deduce that the sequence

TrE/F (ηj−1) (j = 1, 2, . . .)

is linearly generated over F with minimal polynomial f .
(c) Show that one can always choose a polynomial f so that sequence in

part (b) is purely periodic with period q` − 1.

Exercise 20.8. Let F be a finite field, and f ∈ F [X] an irreducible polyno-
mial of degree k over F . Let E be an extension of degree ` over F . Show
that over E, f factors as the product of d distinct irreducible polynomials,
each of degree k/d, where d = gcd(k, `).
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Exercise 20.9. Let E be a finite extension of a finite field F of characteristic
p. Show that if α ∈ E and 0 6= a ∈ F , and if α and α+ a are conjugate over
F , then p divides the degree of α over F .

Exercise 20.10. Let F be a finite field of characteristic p. For a ∈ F ,
consider the polynomial f := Xq − X− a ∈ F [X].

(a) Show that if F = Zp and a 6= 0, then f is irreducible.

(b) More generally, show that if TrF/Zp
(a) 6= 0, then f is irreducible, and

otherwise, f splits into distinct linear factors over F .

Exercise 20.11. Let E be a finite extension of a finite field F . Let α, β ∈ E,
where α has degree a over F , β has degree b over F , and gcd(a, b) = 1. Show
that α+ β has degree ab over F .

Exercise 20.12. Let E be a finite extension of a finite field F . Show that
any F -algebra automorphism on E must be a power of a the Frobenius map
on E over F .

Exercise 20.13. Show that for all primes p, the polynomial X4 + 1 is re-
ducible in Zp[X]. (Contrast this to the fact that this polynomial is irreducible
in Q[X], as discussed in Exercise 17.39.)

Exercise 20.14. This exercise depends on the concepts and results in §19.6.
Let F be a finite field and let E be an extension of degree `. Let σ be the
Frobenius map on E over F .

(a) Show that the minimal polynomial of σ over F is X` − 1.

(b) Show that there exists β ∈ E such that the minimal polynomial of β
under σ is X` − 1.

(c) Conclude that β, σ(β), . . . , σ`−1(β) is a basis for E over F . This type
of basis is called a normal basis.


